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a b s t r a c t

We present a practical graphical–algebraic method that enables one to achieve the true displacement
and shape of deformed geological markers in fault or shear zones as observed on arbitrarily oriented
outcrop surfaces. We use as our natural example deformed quartz veins that have been sheared across
brittle–ductile faults in the Southern Alps of New Zealand. The technique is based on the assumption that
simple shear has dominated the shear zone formation. For input data we require the strikes and dips of
the outcrop surfaces, the offset markers, and the shear zones as well as the pitch of the simple shear
vector in the plane of the shear zone. The paper develops a set of algebraic and graphical operations that
allow one to convert photographs of faulted or sheared planar markers observed on an arbitrary outcrop
surface into an equivalent view that is coincident with the movement (m) plane of the fault or shear
zone. This view displays the true displacement of the offset marker and delineates its deformed shape as
seen in a section that is parallel to the slip vector.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When investigating planar geological structures in the field that
show an offset of older marker planes (e.g. fault zones and shear
zones) we have to deal with the fact that in many cases the outcrop
plane does not coincide with the movement plane (i.e. the plane
perpendicular to the fault or shear zones, that coincides with the
true slip direction). This is crucial, for example, if maps or photo-
graphs are used to constrain the rheology of rocks (e.g. Talbot, 1999;
Pennacchioni, 2005; Fusseis et al., 2006). Ignoring the ‘‘distorted’’
nature of fault or shear zone offset geometries on arbitrary outcrop
planes can yield inaccurate measurements of slip or shear strain,
and of the deformed shape of offset markers.

This paper offers a ‘‘recipe’’ on how to translate geological offset
data from an arbitrary outcrop plane onto the movement plane.2

The paper is based on geological investigations of rocks in a fault
array that has been exhumed from mid-lower crustal depths
(w20 km) and is now exposed in glaciated outcrops in the central
Southern Alps, New Zealand. Here, faults brittlely offset biotite-
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zone Alpine Schist, and – where the tips of these faults encounter
older quartz veins that are hosted by these schists – they terminate
into local ductile shear zones in the quartz veins (Fig. 1).

As a first step towards retrieving rheological information from
the deformed shape of the marker veins, the exposures were
photographed and measurements were made of the fault attitudes
(strike and dip), the quartz marker vein attitudes (strike and dip),
the pitch of the slip lineations in the fault planes, and the strikes
and dips of the outcrop surfaces. Unfortunately, rarely do the gla-
ciated outcrop surfaces coincide exactly with the actual movement
plane. Digitising the photographs of the faults and the quartz veins’
offset across them enabled us to extract x–y coordinates for the
fault and vein margins in the outcrop plane. We then projected
these x–y data onto the movement plane to derive a depiction of
the true offsets and shapes of the displaced planar markers.
2. Assumptions

Before projecting the data onto the movement plane, several
assumptions must be made:

(1) that the fault plane orientation, the marker vein orientation,
the trend and plunge of the slip lineation on the fault surface,
and the outcrop orientation are accurately known;

(2) that the observed slip lineation is a faithful indicator of the
finite slip direction, and that it is viewable nearby on some
other outcrop plane, or is otherwise known;
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Fig. 1. Outcrop photograph showing brittle faults (stippled lines) terminating into
quartz veins and offsetting them ductilely to brittlely. Location: Crawford Knob, central
Southern Alps, New Zealand.
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(3) that the fault plane can be approximated to be a flat, non-
bending surface;

(4) that the orientation and thickness of the original marker vein
did not, prior to offset, change in the third dimension, i.e. that it
was laterally continuous and tabular in shape;

(5) that the subsequent deformational curvature of this marker
was the result of simple shear, thus leading to a cylindrical
‘‘drag fold’’ geometry for the now deformed marker (Ramsay
and Huber, 1987, p. 509);

(6) that photographs have been taken normal to the outcrop sur-
face, or that it is possible to undistort photographs that were
taken at an oblique angle using, e.g. the method of Cooper and
Bamford (1987), or alternatively, that tracings have been taken
directly from the outcrop.
3. Preparing x–y–z data from photographs (Step 1)

For the denotation of vectors, variables and coefficients refer to
the glossary in Appendix A.
3.1. Coordinate systems

In this paper, the right-hand-rule applies for all geological ori-
entation measurements, where the thumb represents the strike of
a plane and the index finger points into the dip direction. All planar
measurements are given in ‘strike/dip’ and all linear measurements
in ‘trend/plunge’.

All Cartesian coordinate systems used in this paper are right-
handed. A geographical and an outcrop coordinate system have
been defined that have a common spatial origin located on the fault
trace in the outcrop plane at the midpoint of the two halves of an
offset marker vein (star in Fig. 2). The geographical coordinate
system has got the axes xg¼North, yg¼ East, and zg¼ ‘‘down’’,

where bx*g ¼
1
0
0

0
@

1
A, by*g ¼

0
1
0

0
@

1
A, and bz*g ¼

0
0
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0
@

1
A are the unit

vectors that point along the respective axes. The outcrop coordinate
system is spanned by the axes xoc, yoc, and zoc, where the positive
xoc-axis is equivalent to the fault trace on the outcrop and pointing
in the down-plunge direction of that trace. yoc lies in the outcrop
face pointing 90� clockwise from the fault trace with respect to the
positive zoc-axis. zoc is represented by the pole to the outcrop sur-

face pointing ‘‘inwards’’ (Fig. 2). bx*oc ¼
xxoc

g

yxoc
g

zxoc
g

0
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g

yyoc
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and bz*oc ¼
xzoc

g

yzoc
g
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0
B@

1
CA are the unit vectors of the outcrop coordinate

system, cast in terms of their geographical coordinates.
In order to determine bx*oc, we first need to find the orientation

of the pole to the outcrop plane and the pole to the fault plane in
the geographical coordinate system by calculating the direction
cosines (Appendix B.1) of those poles from the strike and dip angles
of the respective planes. The pole to the outcrop plane yields bz*oc.

The pole to the fault plane yields the unit vector bf* (Fig. 3a). The

normalised right-handed cross-product of bz*oc � bf* results in bx*oc,
the unit vector parallel to the fault trace on the outcrop surface. To
ensure consistency for the following transformations, we definebx*oc to always point downwards along the outcrop surface, i.e. ifbz*oc � bf* results in a negative value for zxoc

g , we have to multiply the

coordinates for bx*oc by (�1). The normalised right-handed cross-

product bz*oc � bx*oc will then result in the Cartesian vector

coordinates for by*oc (Fig. 2).

3.2. Digitising

For the projection of the marker veins onto the movement
plane, they need to be digitised. In a graphics programme (e.g.
Adobe Illustrator) the photograph is rotated in such a way that the
positive xoc-axis (i.e. down-plunge ‘‘end’’ of the fault trace) points
towards the top. The positive yoc-axis should now point to the
right. The rotated photograph is then resized to a desired scale,
imported into a digitising programme (e.g. Replica by Graphic
Edge Ltd.) and digitised. For this, the origin is chosen such that it
lies on the midpoint between the two offset parts of the markers.
This origin corresponds to the spatial origin (star) in Fig. 2 and will
remain the same throughout the following coordinate trans-
formations. The digitising outputs are coordinates of points in the
xoc–yoc plane of the outcrop coordinate system, with zoc¼ 0. Note
that most digitising softwares use left-handed coordinate systems,
and close attention has to be paid not to confuse the x- and
y-coordinates.

3.3. Geographical coordinates of points

Now the position of the digitised points has to be recast in terms
of the geographical coordinate system. As the outcrop and geo-
graphical coordinate systems both have the same origin, a change of
orthonormal basis can be performed using Eqs. (1a) and (1b), below,
in order to transform the outcrop coordinates of a point P
xP

oc; y
P
oc; z

P
oc ¼ 0

� �
into its geographical coordinates P (xP

g, yP
g, zP

g).
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where Pdp* means that the coordinates of point P are defined by
its position vector p* that is anchored at the common spatial origin
(0, 0, 0).

Knowing that bx*g ¼
1
0
0

0
@

1
A, by*g ¼

0
1
0

0
@

1
A, and bz*g ¼

0
0
1

0
@

1
A, Eq.

(1a) can be simplified to

Pdp*[

xP
g

yP
g

zP
g

0
B@

1
CA[

xxoc
g xyoc

g xzoc
g

yxoc
g yyoc

g yzoc
g

zxoc
g zyoc

g zzoc
g

2
64

3
75$

xP
oc

yP
oc

zP
oc

0
B@

1
CA: (1b)

This operation results in the vector components of vector p*

determining the position of a digitised point P in the geographical
reference system.

4. Projection into the movement plane (Step 2)

4.1. The movement plane (m-plane) in point-normal form

The movement plane or ‘‘m-plane’’ (Fig. 3a) is perpendicular to
the fault plane and parallel to the unit vector of the direction of
movement (i.e. parallel to the slip lineation). The pole to the m-

plane cm* in geographical coordinates can therefore be calculated

from the right-handed cross-product of the unit vector bs* parallel to

the slip direction and the unit vector bf* parallel to the pole of the
fault plane:

cm*[
bs*3

bf*
jbs*3

bf*j[
xm
ym
zm

0
@

1
A (2)

cm* originates at the spatial origin of all coordinate systems.
In algebraic terms a plane in 3-space is uniquely defined by

a point that lies within the plane and a vector normal to the plane,
so that the point-normal form of the equation of the movement
plane M becomes

Mdr*$
cm*[ 0 (3)

where r* is a vector in the m-plane.

4.2. The projection vector and projection line

Similar to the axes of drag folds (Ramsay and Huber, 1987, their

Fig. 23.9) the projection vector bv* corresponds to the intersection

lineation of the fault surface and the marker vein (Fig. 3b). bv* is
independent of the direction of movement and only depends on the
marker vein orientation and the orientation of the fault plane. In

fact, bv* is parallel to both. Thus, the projection vector bv* is given by

the cross-product of the pole to the fault surface bf* and the pole to

the marker vein bq*:

bv*[
bf*3

bq*
jbf*3

bq*j [
xv
yv
zv

0
@

1
A (4)

In Eq. (4) the order of terms in the cross-product does not matter as
the projection vector is only used as a direction vector for the
‘projection line’.
The projection line (Fig. 3a) runs through the point P (xP
g, yP

g, zP
g)

sitting on the outcrop surface and is parallel to the projection
vector. The point P0 (xP0

g , yP0
g , zP0

g ) at which the projection line cuts
through the m-plane is the projection of point P onto the move-
ment plane.

A line in 3-space is determined uniquely by specifying a point on
the line and a non-zero vector parallel to the line so that the vector
equation of the projection line l becomes

ldr*[ p*Dl
bv* (5)

where r* is a vector that is anchored at the spatial origin and

pointing to any point on the projection line l and p* ¼
xP

g

yP
g

zP
g

0
B@

1
CA is the

position vector of point P in the geographical coordinate system

derived from Eq. (1b), bv* is the projection vector derived from Eq.
(4), and l is a scalar parameter with �N < l < þN which reflects
the fact that the line extends indefinitely.

4.3. The projection process

In order to find the point P0, where the projection line cuts the
m-plane, Eqs. (2) and (5) need to be inserted into Eq. (3) and the
resulting equation be solved for l:

l [ L
xmxP

gDymyP
gDzmzP

g

xmxvDymyvDzmzv
(6)

Placing l back into Eq. (5) and solving for all vector coordinates
leads to the coordinates of P0:
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5. Plan view of the m-plane (Step 3)

In order to achieve a plan view of the projected marker
points on the m-plane, the strike and dip of the m-plane
(strikem-plane, dipm-plane, Appendix B.2) needs to be found and
a rotation in 3-space undertaken, to bring that plane and its
points into horizontality and to a position where all fault traces
on the m-plane are parallel to one another. This rotation is
divided into three subrotations (Eqs. (8a), (8b), and (11)). The
strike line of the m-plane is the rotation axis for the first two
subrotations. First, the points on the m-plane are rotated about
the vertical axis (zg) until the strike line of the m-plane is E–W,
i.e. parallel to yg. After this first rotation, the m-plane dips to-
wards the negative xg-direction. This rotation is called ‘‘rot1’’,
and the new position vectors of the projected points are called
p*0rot1:

P0rot1dp*0rot1 [
xP0

rot1
yP0

rot1
zP0

rot1

0
B@

1
CA[

xP0
g cos jLyP0

g sin j
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g sin jDyP0

g cos j

zP0
g

0
B@

1
CA (8a)

The rotation angle for this first step is j ¼ 90� � strikem-plane.
For those strike angles between 0� and 90�, j will be positive and
the rotation will be anticlockwise with respect to the positive zg-
axis. For all other orientations, j will be negative and the rotation
clockwise. Eq. (8a) rotates point P0 (Eq. (7)) about the zg-axis and
results in point P0rot1.

In the second step the coordinates of point P0rot1 derived from
Eq. (8a) are rotated about the now strike-parallel, E–W yg-axis
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(Eq. (8b)). This rotation is called ‘‘rot2’’. As point P0rot1 is part of the
dipping m-plane, the rotation angle for the rotation about the
yg-axis becomes 4 ¼ �dipm-plane and the rotation is clockwise
with respect to the positive yg-axis.
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0
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Eqs. (8a) and (8b) can be merged into Eq. (8c), where P0rot12 is the
projection of point P onto the movement plane and in plan view of
the movement plane. The zP0

rot12-coordinate of point P0rot12 must be
0 after the rotation.
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After having rotated the m-plane and its points into horizontality,
the trace line of the fault on the m-plane need not necessarily be
exactly N–S (i.e. up and down the page). The second step of this
rotation in 3-space aims to make the plots of the shapes and offsets
of multiple cases of displaced markers easily comparable, i.e. we
need to rotate all projected points lying in the m-plane to a position
where the fault traces of all cases are parallel to one another. The
easiest solution to this problem is to conduct one further rotation
(‘‘rot3’’) of each point about the vertical zg-axis (this is the pole to
the now horizontal m-plane). This final rotation will align all the
fault traces in the m-plane into N–S parallelism through the spatial
origin. The trace bt* of a fault on the m-plane is the intersection
between the fault plane and the m-plane. bt* is therefore the right-
handed normalised cross-product of the pole to the m-plane cm*
and the pole to the fault bf*:
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We define bt* to always point downwards, i.e. if zt is negative, we
additionally need to multiply Eq. (9) by the factor (�1).
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Applying the rotation in Eq. (8c) to bt* yields horizontality of the
fault trace in the m-plane. We call the resulting vector

bt*0rot12 ¼
xt0

rot12
yt0

rot12
zt0

rot12

0
B@

1
CA.

The rotation angle for this third rotation (‘‘rot3’’) is the angle
d (Fig. 4) between the positive xg-axis (North) and the trace of the

fault on the horizontal m-plane bt*0rot12, that was derived by exe-
cuting first Eq. (9) and then Eq. (8c). The angle d is the result of the

dot product between bx*g and bt*0rot12:

d [ arccos bx*g$
bt*0rot12

� �
(10)

However, we must take into account that Eq. (10) will only result in
values for d ranging from 0� to 180�. Thus, if yt0

rot12 is positive, d must
be negative and the rotation would be clockwise with respect to the
positive zg-axis. If yt0

rot12 is negative, we must choose d to be positive
for an anticlockwise rotation about the zg-axis. The final rotation
‘‘rot3’’ to be applied to all points is then given by the matrix:

P0rot3d
bp*0rot3 [

xP0
rot3

yP0
rot3

zP0
rot3

0
B@

1
CA[

xP0
rot12cos dLyP0
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xP0
rot12sin dDyP0

rot12cos d

zP0
rot12

0
B@

1
CA (11)
Fig. 4. Schematic diagram of plan view of the movement plane (grey shaded) after the
first two rotations ‘‘rot1’’ (Eq. (8a)) and ‘‘rot2’’ (Eq. (8b)). The rotation angle d for the
third rotation ‘‘rot3’’ (Eq. (11)) is the angle between the positive xg-axis (North) and
the trace of the fault plane in the horizontal movement plane.
6. Examples

In order to demonstrate the usefulness and significance of the
projection of geological field data into the movement plane, we
chose two examples (Fig. 5) from an exhumed brittle–ductile fault
array in the central Southern Alps, New Zealand (e.g. Wightman
et al., 2006). The first example is a case, where the orientation of the
outcrop plane is not very different from the orientation of the m-
plane, whereas in the second example the outcrop orientation
differs strongly from the m-plane orientation.
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Fig. 5. Flow diagram of the two examples described in the main text. (a) Original photographs with required orientation measurements of planes and slip lineation. (b) Photograph
has been rotated such that the xoc-axis points towards the top of the page. The spatial origin of all coordinate systems is marked with a white star. The white circle marks an
exemplary digitised point on the boundary between marker vein and wall rock. The point is given in both the coordinates of the outcrop coordinate system and the geographical
coordinate system. The white double arrows mark the offsets that were measured on the outcrop surface. (c) The xy-data of the marker veins after the projection plotted within the
m-plane and rotated after Eq. (11). The true offsets within the m-plane are marked by black double arrows. The points Prot3

0
are the projections of the points Poc chosen in (b).
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6.1. Example A

The fault in example A strikes at an angle of 246� and dips with
80� towards the NW, the orientation of the marker vein is 355/65
NE and the slip lineation trends 251� and plunges 25�. The outcrop
orientation (172/55 SW) differs by 36� in strike angle and by 28� in
dip angle from that of the movement plane (136/27 SW). Plotting
the transformed coordinates of example A (Fig. 5c) and comparing
them to the original coordinates derived from digitising the marker
vein on the photograph (Fig. 5b) shows that there is hardly any
difference in offset and shape between the original vein and its
projection. The curvature of the projected vein is only slightly less,
and with 12.3 cm the total offset of the projected vein is only 0.4 cm
higher than the one measured in the outcrop plane (11.9 cm).

6.2. Example B

In Example B, the orientation of the fault is 252/88 NW, the
marker vein strikes with an angle of 320� and dips 70� to the NE,
and the trend and plunge of the slip lineation are the same as in
example A (251/25). The difference in strike between the outcrop
plane (270/35 N) and the m-plane (158/25 SW) is 112� and the
difference in dip angles is 10�. The plots in Fig. 5c show that the
curvature of the projected vein is significantly higher than the one
of the original vein. The total offset of the marker vein measured on
the outcrop surface is 8.5 cm, whereas the true offset measured in
the movement plane is only 5.1 cm, meaning that the true offset is
3.4 cm (40%) less than the apparent offset measured directly on the
outcrop surface.

7. Discussion and conclusions

In this paper we presented a simple method for the translation
of geological field data from an outcrop surface into the movement
plane of a fault or shear zone. This enables us to calculate true
displacements from separation data on outcrop faces and the ‘‘true’’
shape of curved and deformed geological markers. This method is
also an algebraic–graphical way to solve for slip from offsets on
arbitrary outcrops. If the method described in this paper is used, it
is no longer necessary to search for optimally oriented outcrops as,
by following the steps above, any outcrop data can be projected into
the desired plane, if all variables that are necessary for the pro-
jection are known.

As indicated by the two given examples, the projection into the
movement plane is especially important for outcrop orientations
that deviate strongly from the orientation of the movement plane.
However, this is a statement without mathematical proof, and one
should consider using the described method for any case of outcrop
orientation in order to achieve a high accuracy when investigating
offsets and shapes of displaced geological markers. The results of
these coordinate transformations clearly depend on the accuracy of
the orientation measurements of planes and lineations and also on
the verticality of the photo axis with respect to the outcrop surface.
Also, if one of the assumptions in 2 is incorrect (e.g. if the de-
formation was not only due to simple shear) this technique will fail.
However, an error propagation analysis would go beyond the scope
of this paper and will be left to keen mathematicians.
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Appendix A. Glossary

A.1. Denotation
a*
 Vector a
ba*
 Unit vector in direction of a
xa
ya
za

0
@

1
A
 Vector components or coordinates of a
a*� b*
* *
Right-handed cross-product

a $b
 Dot product

ja*j
 Length/norm of a
A.2. Subscripts and superscripts
g
 Geographical

oc
 Outcrop

m
 Movement plane

v
 Projection vector

rot
 Rotation
A.3. Key
xg, yg, zg
 Axes spanning geographical coordinate system

xoc, yoc, zoc
*

Axes spanning outcrop coordinate system

f
 Vector in direction of pole to fault plane

s*
 Slip vector

m*
 Vector in direction of pole to m-plane

M
 movement plane

r*
*

Position vector of point P0
q
 Vector in direction of pole to marker vein

v*
 Projection vector

I
 projection line

l
 Scalar parameter

j
 Rotation angle for first rotation about zg-axis

4
 Rotation angle for rotation about yg-axis

d
 Rotation angle for second rotation about zg-axis
Appendix B. Conversions

B.1. Conversion from geological attitudes to Cartesian coordinates

Converting the geological attitudes of a plane or a line into
Cartesian coordinates means determining direction cosines from
strike and dip or trend and plunge measurements. Direction co-
sines are the cosines of the angles a, b, and g that a vector makes
with the positive x, y, and z-axes, respectively. For planes, the
direction cosines are calculated after Eq. (B.1-1) and result in
a unit normal vector pointing in the direction of the pole to the
plane:

bn*p [
npx
npy
npz

0
@

1
A[

cos a

cos b

cos g

0
@

1
A[

sin u sin q

Lcos u sin q

cos q

0
@

1
A; (B.1-1)

where bn*p denotes the unit normal vector of the plane, u is the
strike angle of the plane and q is the dip angle.

The direction cosines of lines are calculated as in Eq. (B.1-2).

bn*l [
nlx
nly
nlz

0
@

1
A[

cos a

cos b

cos g

0
@

1
A[

cos h cos 3
sin h cos 3

sin 3

0
@

1
A; (B.1-2)

where bn*l denotes the unit vector in trend direction of the line, h is
the trend of the line, and 3 is the plunge.
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B.2. Conversion from Cartesian coordinates to geological attitudes

In order to convert the Cartesian vector components
nx
ny
nz

0
@

1
A of

a unit vector bn* (e.g. bn*p or bn*l) into geological attitudes, several
rules must be observed. The conversion to polar coordinates results

in the trend and plunge of the line that contains bn*.
From trigonometrical and geometrical relationships, the pre-

liminary trend m of the line can generally be calculated as

m [ arctan
ny

nx

� �
: (B.2-1)

If nx ¼ 0, then the trend is calculated as

m [
ny

jnyj
$908; (B.2-2)

which means that the line would trend East–West. The first factor
on the right hand side of Eq. (B.2-2) is normalised to �1.

If nx < 0, then the calculation of the trend is

m [ arctan
ny

nx

� �
D1808; (B.2-3)

meaning that 90� < m < 270�. As in this case arctan results in
negative (anti-clockwise) angles between the y-axis and the trend-
line, 180� have to be added to achieve a trend measured clockwise
from North (x-axis).

If arctan nyÞ= nxð Þ
� �

< 0
�

, then the equation to determine the
trend becomes

m [ arctan
ny

nx

� �
D3608: (B.2-4)

In this case, the trend would be negative (anti-clockwise) from
North (x-axis), thus 360� need to be added in order to achieve the
correct trend measured clockwise from North.

The plunge r of the line is determined by

r [ arctan
nzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
x Dn2

y

q
0
B@

1
CA: (B.2-5)

The only rule that applies for finding the plunge is that ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
¼ 0, then the plunge is to be calculated as
r [
nz

jnzj
$908: (B.2-6)

This means that the line would be vertical.
Finally, in case the plunge is negative r < 0ð Þ, more rules apply

for finding the correct trend m0 and plunge r0.
If r < 0 and if mþ 180�ð Þ > 360�, then

m0 [ mL1808: (B.2-7)

If r < 0 and if mþ 180�ð Þ < 360�, then

m0 [ mD1808: (B.2-8)

In all other cases the true trend and plunge of the line are

m0 [ m and r0 [ jrj: (B.2-9)

Assuming bn*p was the unit normal vector to a plane, and having
derived the trend and plunge of the line that contains bn*p, the strike
angle x and dip angle c of the plane can be calculated observing the
following rules:

If 90� þ m0 > 360�, then the strike of the plane is given by

x [ m0L2708: (B.2-10)

In all other cases, the strike is

x [ m0D908; (B.2-11)

and the dip of the plane is

c [ 908Lr0: (B.2-12)
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